17 research outputs found

    Drought-induced oak decline in the western mediterranean region: An overview on current evidences, mechanisms and management options to improve forest resilience

    Get PDF
    Increased forest vulnerability is being reflected as more widespread and severe drought-induced decline episodes. In particular, the Mediterranean area is revealing a high susceptibility to phenomena of loss in tree vitality across species. Within tree species, oaks (Quercus spp.) are experiencing extensive decline in many countries. However, in the wake of the so-called âoak decline phenomenonâ, the attention on these species has generally been limited. In this paper, we review the current available literature on oakdecline cases reported within the Mediterranean Basin, with particular remark for those occurred in Italy and Spain. More specifically our main aims were to: (i) provide an update on the patterns and mechanisms of decline by focusing on tree-ring and wood-anatomical variables; (ii) provide some hints for improving the resistance and resilience of oak stands experiencing decline. Our review reveals that drought is reported as the main driver triggering oak decline within the Mediterranean Basin, although other causes (i.e., increasing temperature, pathogens attack or excessive stand density) could exacerbate decline. In most reported cases, drought induced a substantial reduction of growth and changes in some wood anatomical properties. Indeed, growth decline prior death is also indicated as an early-warning signal of impending death. In ring-porous oak species, declining trees were often characterized by a very low production of latewood and a decrease in lumen area of the widest earlywood vessels, suggesting a potential reduction of hydraulic conductivity. Moreover, hydraulic dysfunction is reported as the main cause of decline. Finally, regarding management actions that should be considered for improving the resilience of declining stands and preserve the species-specific stand composition, it could be useful to shorten the rotation period of coppice stands or promoting their gradual conversion towards high forests, and favoring more drought-resistant species should also be considered. In addition, regeneration prior to regeneration cuts should be improved by anticipating seed dispersal or by planting oak seedlings obtained from local germoplasm

    In-between forest expansion and cropland decline: A revised USLE model for soil erosion risk under land-use change in a Mediterranean region

    Get PDF
    The present study illustrates an original approach for the long-term assessment of soil erosion risk under land-use changes in a Mediterranean region (Matera, southern Italy). The study has been focused on the implementation of a modified Universal Soil Loss Equation (USLE) model at three time points (1960, 1990, 2010) with the objective to evaluate the contribution of each component to model's performance and model outcomes’ reliability. A modified USLE model was proposed for the assessment of soil erosion risk, based on the simplification of model's parameters and the use of high spatial resolution datasets. Spatio-temporal variability in the model's outcomes was analyzed for basic land-use classes. Our approach has improved model's flexibility with the use of high spatial resolution layers, producing reliable long-term estimates of soil loss for the study area

    Stomatal conductance and leaf water potential responses to hydraulic conductance variation in Pinus pinaster seedlings

    Get PDF
    In this study, tree hydraulic conductance (K tree) was experimentally manipulated to study effects on short-term regulation of stomatal conductance (g s), net photosynthesis (A) and bulk leaf water potential (Ψleaf) in well watered 5–6 years old and 1.2 m tall maritime pine seedlings (Pinus pinaster Ait.). K tree was decreased by notching the stem and increased by progressively excising the root system and stem. Gas exchange was measured in a chamber at constant irradiance, vapour pressure deficit, leaf temperature and ambient CO2 concentration. As expected, we found a strong and positive relationship between g s and K tree (r = 0.92, P = 0.0001) and between A and K tree (r = 0.9, P = 0.0001). In contrast, however, we found that the response of Ψleaf to K tree depended on the direction of change in K tree: increases in K tree caused Ψleaf to decrease from around −1.0 to −0.6 MPa, but reductions in K tree were accompanied by homeostasis in Ψleaf (at −1 MPa). Both of these observations could be explained by an adaptative feedback loop between g s and Ψleaf, with Ψleaf prevented from declining below the cavitation threshold by stomatal closure. Our results are consistent with the hypothesis that the observed stomatal responses were mediated by leaf water status, but they also suggest that the stomatal sensitivity to water status increased dramatically as Ψleaf approached −1 MPa

    A global assessment of forest surface albedo and its relationships with climate and atmospheric nitrogen deposition

    Get PDF
    We present a global assessment of the relationships between the short-wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle-leaf forests (ENF); evergreen broad-leaf forests (EBF); deciduous needle-leaf forests (DNF); deciduous broad-leaf forests (DBF); and mixed-forests (MF). Generalized additive models (GAMs) were applied in the exploratory analysis to assess the functional nature of short-wave surface albedo relations to environmental variables. The analysis showed evident correlations of albedo with environmental predictors when data were pooled across PFTs: Tm and Ndep displayed a positive relationship with forest albedo, while a negative relationship was detected with P. These correlations are primarily due to surface albedo differences between conifer and broad-leaf species, and different species geographical distributions. However, the analysis performed within individual PFTs, strengthened by attempts to select ‘pure’ pixels in terms of species composition, showed significant correlations with annual precipitation and nitrogen deposition, pointing toward the potential effect of environmental variables on forest surface albedo at the ecosystem level. Overall, our global assessment emphasizes the importance of elucidating the ecological mechanisms that link environmental conditions and forest canopy properties for an improved parameterization of surface albedo in climate models

    El impuesto predial y su influencia en la recaudación tributaria en la Municipalidad de Independencia, 2022

    Get PDF
    Luego de haber realizado el trabajo de investigación, que tiene por título El impuesto predial y su influencia en el recaudo tributario en el Municipio de Independencia, 2022, en el cual nos planteamos como objetivo principal determinar de qué manera puede influir el impuesto predial en el recaudo tributario en el municipio de Independencia. Es por esta razón que se podemos decir que nuestra población es de 200 personas, pero para la muestra se cogieron 80 personas, el diseño es no experimental esto motivo a que se buscó estudiar cómo puede influir el impuesto predial en el recaudo tributario, a su vez la investigación es de corte transeccional porque se la recopilación de información y estudio corresponde a un tiempo determinado. Finalmente podemos decir que llegamos a la conclusión de que el impuesto predial si tiene influencia sobre el recaudo tributario, esto porque todos los ciudadanos que son propietarios tienen la obligación de cumplir con sus impuestos prediales como corresponde y a su vez se les recomendó mejorar sus distintas áreas administrativas generando campañas tributarias, actualizando el portal de la municipalidad y generar facilidades de pagos para que años tras años se obtenga un mejor presupuesto a raíz de este impuesto

    Growth patterns of Pinus sylvestris across Europe: a functional analysis using the HYDRALL model

    No full text
    The variability of Pinus sylvestrisPinus sylvestrisPinus sylvestrisPinus sylvestrisPinus sylvestrisPinus sylvestrisPinus sylvestrisPinus sylvestrisPinus sylvestrisPinus sylvestrisPinus sylvestrisPinus sylvestrisPinus sylvestrisPinus sylvestrisPinus sylvestrisPinus sylvestris growth over two geographic transects across Europe has been explored through a process-based forest growth model (HYDRALL: HYDRaulic constraints on ALLocation) which accounts for the effects of environmental conditions not only on short-term gas exchanges, but also on allocation and tree structure. The model has been validated against both eddy-covariance and growth data under contrasting environmental conditions. Forest growth was found to be reduced by low temperatures (-50%) and water stress (-37%) at the opposite extremes of the natural range of the species. Application of a functional model made it possible to partition growth reductions between individual processes. Gross primary production was severely affected by low temperatures and short vegetative periods at the northern extreme of the specific range (-53%), and by low air and soil humidity at the southern limit (-26%). The ratio between net and gross primary production was found to be rather constant across the temperate region, only increasing in the boreal zone in response to low temperatures (+20%). Under dry conditions, on the contrary, a substantial proportion of the reduction in aboveground productivity was attributed to the need to allocate increasing amounts of resources to fine root production and maintenance (+16%). Both short and long-term responses should be considered in the prediction of climate change impact on forests

    Cross-Comparison between Landsat 8 (OLI) and Landsat 7 (ETM+) Derived Vegetation Indices in a Mediterranean Environment

    No full text
    Landsat 8 is the most recent generation of Landsat satellite missions that provides remote sensing imagery for earth observation. The Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images, together with Landsat-8 Operational Land Imager (OLI) and Thermal Infrared sensor (TIRS) represent fundamental tools for earth observation due to the optimal combination of the radiometric and geometric images resolution provided by these sensors. However, there are substantial differences between the information provided by Landsat 7 and Landsat 8. In order to perform a multi-temporal analysis, a cross-comparison between image from different Landsat satellites is required. The present study is based on the evaluation of specific intercalibration functions for the standardization of main vegetation indices calculated from the two Landsat generation images, with respect to main land use types. The NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), LSWI (Land Surface Water Index), NBR (Normalized Burn Ratio), VIgreen (Green Vegetation Index), SAVI (Soil Adjusted Vegetation Index), and EVI (Enhanced Vegetation Index) have been derived from August 2017 ETM+ and OLI images (path: 188; row: 32) for the study area (Basilicata Region, located in the southern part of Italy) selected as a highly representative of Mediterranean environment. Main results show slight differences in the values of average reflectance for each band: OLI shows higher values in the near-infrared (NIR) wavelength for all the land use types, while in the short-wave infrared (SWIR) the ETM+ shows higher reflectance values. High correlation coefficients between different indices (in particular NDVI and NDWI) show that ETM+ and OLI can be used as complementary data. The best correlation in terms of cross-comparison was found for NDVI, NDWI, SAVI, and EVI indices; while according to land use classes, statistically significant differences were found for almost all the considered indices calculated with the two sensors

    Landsat TM imagery and NDVI differencing for vegetation change detection: assessing natural expansion of forests in Basilicata, southern Italy

    No full text
    The NDVI (Normalized Difference Vegetation Index) differencing method using Landsat Thematic Mapping images was implemented to assess natural expansion of forests in the Basilicata region (southern Italy) for the period 1984 through 2010. Two Landsat TM (Thematic Mapper) images (1984-2010) were georeferenced and geographically corrected using the first order polynomial transformation, and the nearest neighbour method for resampling. The images were radiometrically corrected using the dark object subtraction model. The pre-processed Landsat TM images were used to calculate NDVI, and subsequently for NDVI differencing. Finally, a threshold for vegetation change detection was identified by visual analysis of Landsat TM RGB band composition, and ratios and visual comparison of digital aerial orthophotos. The methodology was validated using ground-truth observations over the study area. The applied method showed 91.8% accuracy in detection of natural forest expansion. During the examined period, total regional forest cover increased by 19.7% (70 154 ha), consistent with National Forest Inventory data (1984- 2005). The observed forest expansion was also examined in relationship with landscape physical characteristics and distribution of vegetation types in the Basilicata region. Surprisingly, considerable forest expansion also occurred on degraded soils in drought-prone Mediterranean areas
    corecore